A general artificial neural network extension for HTK

نویسندگان

  • Chao Zhang
  • Philip C. Woodland
چکیده

This paper describes the recently developed artificial neural network (ANN) modules in HTK hidden Markov model toolkit, which enables ANN models with very general feed-forward architectures to be used for either acoustic modelling or feature extraction. The HTK ANN extension includes many recent ANN-based speech processing techniques, such as sequence training, model stacking, speaker adaptation, and parameterised activation functions. The implementation allows efficient training by supporting GPUs and various types of data cache. The ANN modules are fully integrated into the rest of the HTK toolkit, which allows existing GMM-HMM methods to be easily used in the ANN-HMM framework. Speech recognition results on a 300 hours DARPA BOLT conversational Mandarin task show that HTK can produce tandem and hybrid systems with state-of-the-art performance on this very challenging task. Furthermore, the flexibility of the implementation is illustrated using demo systems for a Wall Street Journal (WSJ) task. The HTK ANN extension is planned for release in HTK version 3.5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of yield and rating of land characteristics for corn based on artificial neural network and regression models in southern Iran

This study was conducted to rate the land characteristics of corn in hot areas based on artificial neural networks and regression models. For this purpose, 63 corn fields were selected in southern Iran. In each farm, a pedon was excavated, described and sampled. A questionnaire was completed for each farm. A stepwise regression model was used to study the relationship between land characteristi...

متن کامل

Curl Size and Pelt Color Determination of Zandi Lambs Using Image Processing and Artificial Neural Network

In this study, a method based on using image processing and artificial neural network is introduced to determine pelt color and curl size of newborn lambs in Zandi sheep. The data was collected from 300 newborn lambs reared in the Zandi sheep breeding centre of Khojir, Tehran. Primarily, curl size and pelt color of new born lambs was recorded by experienced appraisers, and at the same time, sev...

متن کامل

LIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK

In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...

متن کامل

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015